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a b s t r a c t

Concept-cognitive learning (CCL), as a cognitive process, is an emerging field of simulating the human
brain to learn concepts in the formal context. Simultaneously, attention is a core property of all
perceptual and cognitive operations. Nevertheless, no current existing CCL models and conceptual
clustering methods consider the impact of attention. In light of these observations, in this article, we
present a novel concept learning method, called the multi-attention concept-cognitive learning model
(MA-CLM), to address the issue by exploiting graph attention and the graph structure of the concept
space. This model is deployed toward the goal of conceptual cognitive more reasonable: generate
pseudo-concept with higher expected utility while taking into consideration making classification tasks
more efficient. Specifically, a conceptual attention space is learned for each decision class via attribute
attention. Furthermore, a new concept clustering and concept generation method based on graph
attention was proposed based on the conceptual attention space. Comparative studies with S2CLα over
a total of nine UCI data sets validate the effectiveness and efficiency of concept clustering based on
graph attention in concept-cognitive learning. In addition, we also performed a comparative evaluation
of MA-CLM against several classical classification algorithms to demonstrate the excellent properties in
classification tasks. Finally, the model is validated by concept generation on the handwritten numeral
dataset MNIST.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Cognitive computing is one of the core technical fields of
ognitive science and an important part of artificial intelligence.
ore specifically, it is a computer system that simulates the
ognitive process of the human brain. Concept-cognitive learning
CCL) is an emerging field that simulates the human cognitive
rocess of concept learning, which provides a novel and effective
ethod for knowledge discovery problems such as classification

asks [1–6], image annotation tasks [7] and rule extraction [8–10].
umerous efforts have since continued to push the develop-
ent of conceptual learning models at the theoretical level and
pplication levels.
Concept-cognitive learning, to a large extent, depends on the

tructures of concept and the target concepts [11]. Accordingly,
large amount of concepts such as formal concept [12], fuzzy
oncept [13], object-oriented concept [14], attribute oriented con-
ept [15], three-way concept [16], approximate concept [17] and
FS [18] concept have been proposed respectively. With the rapid
rowth of data size, if the concept sets do not have a strict lattice

∗ Corresponding author.
E-mail addresses: chxuwh@gmail.com (W.H. Xu), chenyaoqi17@126.com

Y. Chen).
ttps://doi.org/10.1016/j.knosys.2022.109472
950-7051/© 2022 Elsevier B.V. All rights reserved.
structure like the concept lattice, it may be able to obtain an ef-
fective and efficient learning algorithm [11]. In addition, granular
computing theory believes that data can often be divided into
different granular to meet different needs. Therefore, granular
concepts [19], that is, concept space is introduced into CCL. In
recent years, Shi [2,5] and Mi [3,4,20] propose several CCL models
based on rule formal decision context and concept space to obtain
conceptual generalization capability and deal with classification
tasks. We show the development stages of the concept-cognitive
learning in Fig. 1.

Conceptual clustering [31] is not only one of the essential
methods in inductive learning (also known as concept learn-
ing [32]), but also a crucial element of the product develop-
ment process [33]. Conceptual clustering focuses on dividing
concepts into different categories, and then using new concepts
with more vital generalization capabilities to represent concept
clusters, rather than clustering based on the similarity
between geometric distances of data objects like K-means clus-
tering. Therefore, conceptual clustering has two crucial tasks:
concept classification and concept generation. Beyond some stan-
dard clustering methods, Mi [20] proposed a fuzzy conceptual
clustering and generation model which pays attention to both
attribute information and object information. It is of great signifi-
cance to improve the performance of cluster analysis and concept

https://doi.org/10.1016/j.knosys.2022.109472
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Fig. 1. Development stages of concept learning in recent years [21–30].
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lassification. But it needs to be pointed out that in cognitive
cience, humans will selectively focus on overall situation while
gnoring other unconspicuous details due to the bottleneck of
nformation processing. Humans need to select a specific part
nd then focus on it to rationalize the limited information-
rocessing resources. For example, only a few words to be read
ill be paid attention to and processed when people are reading.
owever, in concept-cognitive learning, some concept learning
ystems proposed by scholars do not take into account atten-
ion. In addition, what we really want is for the concept space
o perform well on the new samples.To achieve this goal, CCL
hould have the ability to identify new samples. However, when
he amount of data is large, the number of concepts in the
oncept space will be enormous, which will bring difficulties
o the identification of new samples. Therefore, clustering the
oncept space to generate representative concepts has impor-
ant practical significance. Attention is substantial for learning a
lear concept with excellent generalization ability. Motivated by
hese observations, we present a novel model named MA-CLM.
e introduced an attention-based architecture with the aim of
erforming conceptual clustering in the concept space. The idea
s to calculate the attention coefficient of each concept in the
oncept space by paying attention to its neighbors. Note that the
oncept clustering based on attention-architecture has several
nteresting characteristics: By specifying arbitrary threshold, it
an be applied to conceptual clustering with different degrees.
urthermore, it can also be directly used for concept induction
earning and concept generation to reduce the size of concept
pace and speed up concept prediction.
The main contributions of this article are listed as follows.
(1) We find that the vital role in CCL of concept selection and

oncept generation is attention. Therefore, attention is introduced
nto the CCL model. More specifically, the conceptual attention
pace is defined, and the concept clustering is realized by refer-
ing to the idea of graph attention. It improves the efficiency and
lassification accuracy of the conceptual cognitive model.
(2) Considering the information provided by the category dis-

inguishing attribute of the pseudo-concept spaces, a new dis-
riminant index is defined in concept category recognition, which
ombines maximum concept similarity and global similarity.
(3) Leveraging this framework, we conduct an extensive ex-

erimental study to evaluate the effect of the MA-CLM method
n concept prediction and generation. In our experiments, MA-
LM is found to perform best for the considered datasets on
lassification tasks, clearly outperforming the other algorithm.
oreover, this model can also generate reasonable new concepts.
The remainder of this article is organized as follows. Some

elated basic knowledge are reviewed in Section 2. And we
ddresses the proposed method, MA-CLM, in detail, including
undamental ideas, processes, and algorithms in Section 3. In
ection 4, we shows experiments and makes a comparison with
2CLα and other classical classification algorithms on some
atasets. The conclusion and our future work are proposed in
ection 5.
2

2. Preliminaries

In this section, we briefly review some basic notions related
to CCL.

Definition 1 ([12]). A triplet (U, AT , I) is known as a formal
context, where U and AT are, respectively, an object set and an
attribute set, and I is a binary relation between U and AT , that
s, I ⊆ U × AT . Here, xIa means object x has the attribute a.
urthermore, the derivation operator is defined for X ⊆ U, B ⊆
T as follows:

(X) = {a ∈ AT |xIa for all x ∈ X},

g(B) = {x ∈ U |xIa for all a ∈ B}.

f (X) is the maximal set of the attributes that all the objects in
X have in common and g(B) is the maximal set of the objects
shared by all the attributes in B. A concept in the formal context
U, AT , I) is defined to be an ordered pair (X, B) if f (X) = B and
(B) = X , where the elements X and B of the concept (X, B) are
alled the extent and intent, respectively.

roperty 1 ([12]). For any X1, X2 ⊆ U and B1, B2 ⊆ AT , the
ollowing properties hold:

X1 ⊆ X2 ⇒ f (X2) ⊆ f (X1)

B1 ⊆ B2 ⇒ g(B2) ⊆ g(B1)

(X1 ∪ X2) ⊇ f (X1) ∩ f (X2)

(B) = {x ∈ U |B ⊆ f ({x})}

Let (U, AT , I) be a formal context, 2U and 2AT be the power
sets of U and AT , respectively. Then, L : 2U

→ 2AT and H :
2U
→ 2AT are considered as two set-valued mappings, and they

are abbreviated as L and H, respectively. Furthermore, if for any
X1, X2 ⊆ U and B1, B2 ⊆ AT , the following properties hold:

X1 ⊆ X2 ⇒ L(X2) ⊆ L(X1)

B1 ⊆ B2 ⇒ H(B2) ⊆ H(B1)

L (X1 ∪ X2) ⊇ L (X1) ∩ L (X2)

H (B) = {x ∈ U |B ⊆ L ({x})}

Then, the two set-valued mappings L and H are referred as the
cognitive operators [34]. In the cases and experiments in this
paper, the operators f and g in formal concept analysis are used
as cognitive operators L and H.
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Table 1
A regular formal decision context.
U c1 c2 c3 c4 c5 c6 c7 c8 c9 d1 d2
1 1 1 1 0 1 1 1 1 1 1 0
2 1 1 0 0 0 0 0 0 0 1 0
3 1 0 1 0 0 0 0 0 0 1 0
4 0 0 0 1 1 0 0 1 0 1 0
5 0 0 0 1 1 0 1 0 0 1 0
6 1 0 1 0 0 1 1 0 1 0 1
7 1 1 1 0 0 0 1 0 1 0 1
8 0 1 1 0 1 1 0 1 0 0 1
9 0 1 1 1 0 0 0 0 1 0 1
E
d

s

a
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Definition 2 ([5]). Let (U, C, I) and (U,D, J) be two formal con-
texts, where I ⊆ U × C , J ⊆ U × D. For any d1, d2 ∈ D, if
H(d1) ∩ H(d2 ) = ∅, then a quintuple (U, C, I,D, J) is referred to
as a regular formal decision context, where (U, C, I) and (U,D, J)
are called the conditional formal context and decision formal
context, respectively.

Example 1. Table 1 is the shopping records of a supermarket, in
which the set {1, 2, . . . , 9} represents nine customers, the sets
{c1, c2, . . . , c9} and {d1, d2} represent eleven commodities, and
the 1 indicating that the corresponding customer has purchased
the corresponding commodity. From Definition 2, we know that
Table 1 expresses a regular formal decision context, where U =
{1, 2, . . . , 9}, C = {c1, c2, . . . , c9} and D = {d1, d2}.

Definition 3 ([34]). For any x ∈ U and a ∈ AT , the
pairs (HL (x) ,L (x)) and (H (a) ,LH (a)) are called the granular
concepts (or simply concepts) under the operators L and H.
Moreover, we denote the concept space that is a set of all granular
concepts by GLH, that is

GLH = { (HL (x) ,L (x))| x ∈ U} ∪ { (H (a) ,LH (a))| a ∈ AT } .

From the above formula, we know that a concept space is formed
from varieties of concepts where each concept can generally be
identified by two aspects: (1) extent and (2) intent [34].

Example 2. Continued with Example 1, for the class d1, its
corresponding conditional concept space GLH,d1 can be shown as

GLH,d1 ={({1}, {c1, c2, c3, c5, c6, c7, c8, c9}), ({1, 2}, {c1, c2}),
({1, 3}, {c1, c3}), ({1, 2, 3}, {c1}), ({1, 4}, {c5, c8}),
({4}, {c4, c5, c8}), ({1, 5}, {c5, c7}), ({5}, {c4, c5, c7}),
({4, 5}, {c4, c5}), ({1, 4, 5}, {c5})}

roperty 2 ([5]). For any (X1, B) ∈ GC
LH and (X2, D1) ∈ GD

LH,
here GC

LH and GD
LH are, respectively, the concept space of (U, C, I)

nd (U,D, J), if X1 ⊆ X2, and X1, B, X2, and D1 are nonempty, then
he object set X1 is connected with the decision attribute set D1 under
he conditional attribute set B in a regular formal decision context
U, C, I,D, J).

Intuitively, Property 2 shows that an object x(x ∈ X1) can be
abeled by a single label d(d ∈ D1).

For (X1, B1), (X2, B2) ∈ GLH, we define the order relation
X1, B1) ⋞ (X2, B2) if and only if X1 ⊆ X2 (or B2 ⊆ B1). Then,
e say that (X1, B1) is a subconcept of (X2, B2), and (X2, B2) is a
uper concept of (X1, B1).
For more details about conceptual cognitive learning, please

efer to the literature [5].

. Multi-attention concept cognitive learning

Attention is a core property of all perceptual and cognitive

perations. It has now permeated most aspects of perception w

3

and cognition research. Growing consensus indicates that selec-
tion mechanisms operate throughout the brain and are involved
in every stage from sensory processing to decision-making and
consciousness. Attention has become a catch-all term for how
the brain controls its information processing, and its effects can
be measured through conscious introspection, overt and implicit
behaviors, electrophysiology, and brain imaging [35]. Attentional
mechanisms evolved out of necessity to efficiently focus lim-
ited processing capacity on the most important information rel-
evant to ongoing goals and behaviors. Attention is necessary in
concept-cognitive learning because concept space presents far
more information than can be effectively processed at some given
moment. This constraint of limited capacity is a critical factor in
introducing attention.

3.1. Conceptual attention space

Exogenous, bottom-up certain special purpose draws attention
to a location by a cue, such as decision-making attribute. Accord-
ingly, in different concept spaces, the attention to the attribute
is different. In the cognitive process, the attributes that are more
similar to the decision attributes will be paid more attention, and
the inner product is one of the methods to calculate the similarity
of two vectors. Therefore, the inner product is used to calculate
the attention in Eq. (1). We compute the dot products of all
condition attribute vector {c⃗1, c⃗2, . . . , ⃗cn1} with decision attribute
vector d⃗k(k = 1, 2, . . . , n2). In addition, for each class di, apply
a softmax function to obtain the attentions on the attributes to
make each attention be in the interval (0, 1), and the attention
of all attributes add up to 1. Specifically, the standard softmax
function [36] softmax : RK

→ RK is defined by the formula

softmax(z⃗)i =
exp(zi)∑K
j=1 exp(zj)

for i = 1, . . . , K and z⃗ = (z1, . . . , zK ) ∈ RK .

xample 3. Continued with Example 1, for the class d1, the
egree of attention to attribute c1 can be calculated as

oftmax((c⃗1 · d⃗1, c⃗2 · d⃗1, . . . , c⃗9 · d⃗1))1

=
exp(c⃗1 · d⃗1)∑9
j=1 exp(c⃗j · d⃗j)

=
e3

e3 + e2 + e2 + e2 + e3 + e1 + e2 + e2 + e1
= 0.2433.

In practice, we compute the attention on a set of decision
ttributes simultaneously, packed together into a matrix D =
d⃗1, . . . , d⃗n2 ). The conditional attribute are also packed together
nto matrices C =

(
c⃗1, c⃗2, . . . , ⃗cn1

)
. We compute the attention

atrix of outputs as:

= Attention(C |D) = softmax(DTC). (1)

here A represents the attention of attribute c in the d class.
ij j i
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xample 4. Continued with Example 1, the attention matrix can
e calculated as

= softmax(

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 1 1 1 1 1
1 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 1 0
0 0 0 1 1 0 1 0 0
1 0 1 0 0 1 1 0 1
1 1 1 0 0 0 1 0 1
0 1 1 0 1 1 0 1 0
0 1 1 1 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
)

= softmax(
[
3 2 2 2 3 1 2 2 1
2 3 4 1 1 2 2 1 3

]
)

=

[
0.2433 0.0895 0.0895 0.0895 0.2433 0.0329 0.0895 0.0895 0.0329
0.0591 0.1606 0.4365 0.0217 0.0217 0.0591 0.0591 0.0217 0.1606

]
.

In cognitive science, different levels of attention to attributes
ead to additional attention to some concepts in the concept
pace. In other words, generally speaking, we pay more attention
o a concept because of some salient attributes just as we are
ore likely to notice red objects than black ones. When we aim
t a conceptual space, we inevitably focus on general issues at
he expense of detail, pointing to a few relevant and unique
oncepts as much as possible. Inspired by this, we introduce
onceptual attention space into performance concept-cognitive
earning. Since a concept is composed of two parts, extent and
ntent, the attention to the concept depends to a certain extent
n its intent. Based on this, the attention of (X, B) can be regarded
s the sum of the attention of the attributes included in the
onceptual intent.

efinition 4. For the class dk, let (X, B) be a granular concept and
ttention(C |dk) = Ak· is the n1 dimensional vector of attentions on
he attributes, then the attention of (X, B) is defined as follow:
ttention((X, B)) = b⃗Attention(C |dk)T , where Attention(C |dk) =

Ak1, Ak2, . . . , Akn1 ), b⃗ = (b1, b2, . . . , bn1 ), bi =
{
1, ci ∈ B,
0, ci /∈ B.

xample 5. Continued with Example 4, for the class d1, (X, B) =
{5}, {c4, c5, c7}) ∈ GLH,d1 , the operation of attention as depicted
n Fig. 2:

Furthermore, we denote conceptual attention space(CAS) which
s a set of binary pairs composed of the granular concept whose
ttention degree exceeds a given threshold cast(cast ∈ [0, 1)) and
ts attention degree, that is

AScast
= { ((HL (x) ,L (x)) , Attention (HL (x) ,L (x)))| x ∈ U,

Attention (HL (x) ,L (x)) ≥ cast}
∪ { ((H (a) ,LH (a)) , Attention (H (a) ,LH (a)))| a ∈

AT , Attention (H (a) ,LH (a)) ≥ cast} .

xample 6. Continued with Example 2, let cast = 0.2, for the
lass d1, its corresponding conditional conceptual attention space
AScast

d1
can be shown as

AScast
d1 ={(({1}, {c1, c2, c3, c5, c6, c7, c8, c9}), 0.91),

(({1, 2}, {c1, c2}), 0.33), (({1, 3}, {c1, c3}), 0.33),
(({1, 2, 3}, {c1}), 0.24),
(({1, 4}, {c5, c8}), 0.33), (({4}, {c4, c5, c8}), 0.42),
(({1, 5}, {c5, c7}), 0.33), (({5}, {c4, c5, c7}), 0.42),
(({4, 5}, {c4, c5}), 0.33), (({1, 4, 5}, {c5}), 0.24)}.

The hyper-parameter cast is the CAS reduction factor and its
ffect is discussed in Section 4.2.
 t

4

Based on the above discussion, the complete algorithm of
constructing CAS (called CCAS) is presented in Algorithm 1.

Algorithm 1: Constructing CAS
Input: A formal context (U, AT , I) and a conceptual

attention space threshold cast .
Output: The conceptual attention space CAScast .

1 for each x ∈ U do
2 Construct a granular concept (HL (x) ,L (x)).
3 Computing the attention of (HL (x) ,L (x)) by

Definition 4.
4 if Attention (HL (x) ,L (x)) ≥ cast then
5 CAScast

←−

((HL (x) ,L (x)) , Attention (HL (x) ,L (x))).
6 end
7 end
8 for each a ∈ AT do
9 Construct a granular concept (H (a) ,LH (a)).

10 Computing the attention of (H (a) ,LH (a)) by
Definition 4.

11 if Attention (H (a) ,LH (a)) ≥ cast then
12 CAScast

←−

((H (a) ,LH (a)) , Attention (H (a) ,LH (a))).
13 end
14 end
15 return: CAScast ;

3.2. Conceptual clustering based on graph attention

Rosch [37] established the prototype category theory with
typical samples as cognitive reference points. According to the
prototype theory, a category is a concept composed of some fea-
tures that are usually gathered together. These attributes are not
necessary and sufficient conditions to define the category. From a
cognitive perspective, all categories intersect on the edge of each
other with no clear boundaries. The ambiguity and openness of
the category are actually in line with the principle of cognitive
economy, allowing us to use less cognitive effort to obtain as
much information as possible. The original intent of the formal
concept is established under sufficient and necessary conditions,
which is inconsistent with the idea of the prototype theory. Based
on this, we introduce the idea of conceptual clustering to further
study the formal concept. When people establish or understand
a category, they often take a crucial prototype as a benchmark
or cognitive reference point. Ungerer and Schmid [38] call the
abstract prototype not a specific sample but a general schematic
representation based on category members. It is the most typical
and characteristic member in the category. Archetype is a typi-
cal member of the category, and it enjoys more attributes than
other members. Accordingly, we define the core concepts in the
conceptual attention space as:

Definition 5. Given a subset D ⊆ CAScast , we define core concept
(X, B) , Attention(X, B)) of D as follows:

((Xi, Bi) , Attention(Xi, Bi)) ∈ D, Attention (Xi, Bi) ≤ Attention (X, B) .

The core concept is accordance with characteristics of the
rchetype. Based on core concepts, we call certain concepts that
ave family similarities with core concepts as adjacent concepts.
ere we define the concept of adjacency as a concept with the
ame object as the core concept, which is highly consistent with
he thinking of modern category theory.
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c
a
g

s

D

Definition 6. For ((X, B) , Attention(X, B)) ∈ CAScast , if ((X1, B1) ,
Attention (X1, B1)) ∈ CAScast , and X1 ∩ X ̸= ∅, then ((X1, B1) ,
Attention (X1, B1)) is referred to as a adjacency concept of ((X, B) ,
Attention(X, B)).

The value of conceptual clustering will lie in its proposal being
conducive to reducing the size of concept space, making concept-
cognitive learning more effective, and as a starting point for
classification tasks and new concept generation. At a minimum,
concept clustering serves as a portal for fast and effective classi-
fication, and at its best, it can stimulate new practical concepts
and more integrative information. We introduce the concept of
the concept cluster, where a pseudo-concept is used to describe
a cluster. The clustering begins with core concepts, followed by
the adjacency concept. A core concept and adjacency concepts
characterize the structure of a concept cluster. We wish to use
this structure to facilitate our concept cognition learning. Concept
clustering can also be seen as the process of recognizing the
concepts that have been mastered. The two most important tasks
in a conceptual clustering system are concept classification and
concept discovery [20]. We usually pay more attention to certain
concepts when identifying in a specific concept space. Inspired
by graph attention, in our clustering mechanism, pay attention
to the concept with the most prominent attention value in the
CAS, cluster it with its neighboring concepts together to generate
pseudo-concepts, and continue this process until clustering is im-
possible. In order to transform the concept into more generalized
pseudo-concepts with sufficient expressive power, at least one
conceptual clustering transformation is required. The relevant
definitions are as follows:

Definition 7. For the class dk, let ((X, B) , Attention(X, B)) be
a granular concept, ((X1, B1) , Attention (X1, B1)) be its adjacency
concept and Attention(C |dk) is the vector of attentions on the
attributes, then the intent attention coefficient is defined as fol-
lows:

eIN (B, B1) =
u⃗Attention(C |dk)T

v⃗Attention(C |dk)T
,

here u⃗ = (u1, u2, . . . , un1 ), ui =

{
1, ci ∈ B ∩ B1,

0, ci /∈ B ∩ B1.
v⃗ =

v1, v2, . . . , vn1 ), vi =

{
1, ci ∈ B ∪ B1,

0, ci /∈ B ∪ B1.

In addition, some standard conceptual clustering methods
ainly focus on the attribute information, ignoring the object

nformation that is also important to improve clustering analysis
nd concept classification ability [20]. To address the problem, we
ropose the extent attention coefficient.
5

Definition 8. Let ((X, B) , Attention(X, B)) be a granular concept,
((X1, B1) , Attention (X1, B1)) be its adjacency concept, then the
extent attention coefficient is defined as follows:

eEX (X, X1) =
|X ∩ X1|

|X ∪ X1|
.

We then perform attention on the adjacency concept, com-
putes attention coefficients

e((X, B), (X1, B1)) = iaw · eIN + eaw · eEX + (1− iaw − eaw)

· Attention((X1, B1)), (2)

where iaw(iaw ∈ [0, 1]), eaw(eaw ∈ [0, 1]) are the weights of the
intent attention coefficient and the extend attention coefficient
in the final attention coefficient, respectively. In its most general
formulation, the model allows the adjacency concept with an
attention coefficient greater than cst(cst ∈ (0, 1)) to attend on
(X, B), dropping all structural information. We inject the graph
structure into the pseudo-concept by performing attention and
only compute attention e for adjacency concepts.

Let AC cst
= {((X1, B1) , Attention(X1, B1)), ((X2, B2) , Attention

(X2, B2)), . . . , ((Xk, Bk) , Attention(Xk, Bk))} be all adjacency con-
cept with attention coefficient greater than cst of ((X, B) ,

Attention(X, B)). Then to make the attention coefficients easily
omparable across different attention clusters, we normalize the
djacency concept attention using the softmax function. The
raph attention of (

(
Xj, Bj

)
, Attention(Xj, Bj)) can be shown as

oftmaxj(ej) =
exp(ej)∑k
j=1 exp(ej)

, (3)

where ej = e((X, B), (Xj, Bj)), ((Xj, Bj), Attention(Xj, Bj)) ∈ AC cst .
According to the above definitions of core concepts and adja-

cency concepts, we express the concept cluster as,

Definition 9. For a threshold cst , given a concept subset Ccst
⊆

⊆ CAScast ,we define an attention concept cluster Ccst as follow:

Ccst
= {((X, B), Attention(X, B))} ∪ AC cst ,

where (X, B) is a core concept of D, AC cst be the adjacency concept
with attention greater than or equal to cst of (X, B) in concept set
D ⊆ CAScast .

Example 7. Continued with Example 6, let cst = 0.5, for the
class d1, its corresponding conceptual clustering based on graph
attention in CAScast

d1
can be shown as Fig. 3. The conceptual atten-

tion space can be viewed as a weighted directed graph, where the
weight is the attention between concepts. Note that the attention
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Fig. 3. An illustration of proposed conceptual clustering process based on graph attention. In this example, a conceptual attention space with ten concepts is clustered.
Since there are two concepts with the same degree of attention, c6 and c8, the clustering order is different, which will produce different clustering results.
etween concepts is directional. From formula (2), it can be found
hat e((X, B), (X1, B1)) is different from e((X1, B1), (X, B)). For the
sake of brevity, we denote the conceptual attention space in
Example 6 by CAScast

d1
= {c1, c2, c3, c4, c5, c6, c7, c8, c9, c10}.

One of the benefits of attention is that they allow for dealing
ith concept space with redundant information, focusing on the
ost relevant parts of concepts. Inspired by this, we present an
ttention-based conceptual clustering to perform the synthesis
f new concepts in concept space. The idea is to compute the
idden representations of the core concepts in the graph formed
y concept space, by attending over its neighbors, following an
ttention strategy. The attention architecture has several inter-
sting properties: (1) the operation is efficient to classification
asks since it compresses the number of concepts in the concept
pace; (2) the model is directly applicable to concept inductive
earning problems, including tasks of the concept-cognition learn-
ng model generalization. Next, the definition of pseudo-concept
eneration based on attention is given.

efinition 10. For Ccst , let XPpcat
= X ∪k

i=1 Xk and BPpcat
=

∪ {ci ∈ C |bsi ≥ pcat}, where pcat(pcat ∈ (0, 1]) is the threshold
f graph attention weighted summation of an attribute in the
djacency concepts of concept cluster, and

⃗s = (bs1, b
s
2, . . . , bsn1 ) =

k∑
j=1

softmaxj(ej)b⃗j,

here b⃗j = (bj1, bj2, . . . , bjn1 ), bji =
{
1, ci ∈ Bj,

0, ci /∈ Bj.

In the adjacency concepts of concept clusters, if the weighted
sum of the attention of an attribute is greater than the threshold
pcat , this attribute is more representative of the concept clus-
ter and belongs to the pseudo-concept intent. Then, we define
that the pair (XPpcat , BPpcat ) is a pseudo-concept induced by the
Ccst . In what follows, the pseudo-concept (XPpcat , BPpcat ) is called
the representation of the Ccst . Pseudo-concepts can also be un-
derstood as a pair of intent and extent. Statistically speaking,
the generated pseudo-concepts can characterize a new concept,
but these attributes of intent are not necessary and sufficient
conditions to define the extent. The attributes in the intent are
6

shared by some objects in the extent, and the objects in the extent
share some attributes in the extent, and the degree of the intent
representation extent is affected by the threshold pcat . Note that
the process of generating a new pseudo-concept is known as
pseudo-concept generation.

Example 8. Continuing with Example 7, in the clustering process,
after the third concept cluster is generated, the remaining concept
set is D = {c2, c3, c4, c10}. According to Definition 5, c2 is
the core concept. The basic mechanism of the pseudo-concept
generation process is shown in Fig. 4.

Based on Definition 10, the procedure of pseudo-concept gen-
eration is summarized in Algorithm 2.
Algorithm 2: Pseudo-concept generation

Input: A concept subset D ∈ CAScast , the core concept
((X, B) , Attention(X, B)), the attention threshold
cst , pseudo-concept generation threshold pcat .

Output: The attention concept cluster Ccst , the
pseudo-concept (XPpcat , BPpcat ).

1 AC cst
= φ, C cst

= φ

2 for ((Xi, Bi), Attention(Xi, Bi)) ∈ D do
3 if Xi ∩ X ̸= ∅ then
4 Computes attention coefficients ei of (X, B) to

(Xi, Bi) by Definition 7, Definition 8,and
Formula (2).

5 if e((X, B), (Xi, Bi)) > cst then
6 AC cst

←− ((Xi, Bi) , Attention (Xi, Bi))
7 end
8 end
9 end

10 Get softmaxi(ei) by Formula (3).
11 C cst

= {((X, B), Attention(X, B))} ∪ AC cst

12 Construct a pseudo-concept (XPpcat , BPpcat ) by
Definition 9.

13 return: C cst , (XPpcat , BPpcat ).

Based on the above theory, the procedure of conceptual clus-
tering based on graph attention in CAS is summarized in Algo-
rithm 3.
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Fig. 4. An illustration of the proposed concept generation process based on graph attention. In this example, a core concept with two adjacency concepts are
clustered, resulting in a pseudo-concept.
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Algorithm 3: Conceptual clustering based on graph
ttention

Input: A conceptual attention space CAScast , the
attention threshold cst , pseudo-concept
generation threshold pcat .

Output: The pseudo-concept space PC.
1 D = CAScast

2 while |D| > 0 do
3 Ccst

= φ

4 Find the core concept ((X, B), Attention(X, B)) of D.
5 Compute the attention concept cluster Ccst of

((X, B), Attention(X, B)) in the concept subset D
and the pseudo-concept (XPpcat , BPpcat ) by
Algorithm 2 .

6 D = CAScast
\ Ccst

7 PC←− (XPpcat , BPpcat )
8 end
9 return: PC;

3.3. Concept prediction

After conceptual clustering is completed in CAS, we can ob-
ain a pseudo-concept space. Generally, different concept spaces
ay different degrees of attention to attributes, which can be
eflected by the distribution of different attributes in pseudo-
oncept spaces of different categories. Suppose an attribute fre-
uently appears in the pseudo-concept space and rarely in other
oncept spaces. In that case, it is considered a unique attribute of
he concept space with good classification ability and suitable for
he classification task. Pseudo-concept space attribute attention
s calculated by:

Aij =
nij

|PCi|
log

∑
i |PCi|∑
i nij

,

here nij is the number of occurrences of the attribute cj in the
i concept space. |PCi| represent the total number of pseudo-
oncepts in concept space d . Recalculate the attention of each
i

7

ttribute value according to the category, and the class attribute
ttention matrix can be expressed as:

A =

⎛⎜⎜⎝
c1 c2 ··· cn1

d1 a11 a12 · · · a1n1
d2 a21 a22 · · · a2n1
...

...
...

. . .
...

dn2 an11 an12 · · · an2n1

⎞⎟⎟⎠.

n the above formula, each aij value in the matrix represents the
ttention value of each attribute in the same category pseudo-
oncept space and represents the importance of attribute in the
nformation distribution of the whole category.

For any new input sample xi, consider it as a concept (x,L (x)).
n order to meet the needs of predicting a large amount of
nlabeled data, in fact, an appropriate measure of similarity plays
n important role in the learning effect. For the definition of
ategory similarity in concept category recognition, Mi [5] con-
iders the cognitive weight in concept similarity. Furthermore,
he influence of feature difference on similarity is introduced
nto concept similarity, and the maximum concept similarity and
verage similarity in concept space are considered [3]. However,
he existing definition of category similarity of new concepts only
onsiders the similarity between the new concept and the con-
ept in the concept space while ignoring the category similarity
nformation of the new concept that may be provided by the
ategory distinguishing attribute of the concept space as a whole.
n light of the above problems, a concept space global similarity
ased on pseudo-concept space attribute attention is defined.
his paper presents a mixed category similarity that combines
aximum concept similarity and global similarity of concept
pace. A method to define the similarity degree considering the
lobal information of concept space and the most similar concept
nformation is proposed.

im((x,L (x)) ,PCi)

= (1− ga) max
(XP,BP)∈PCi

{
u⃗
−→
PAi

T(
u⃗+ 2cdw · v⃗ + 2 (1− cdw) · w⃗

)−→
PAi

T
}

+ ga
−−→
L x ·

−→
PA T , (4)
( ) i
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here ga(ga ∈ [0, 1]) represents the weight of global similarity,
he parameters cdw(cdw ∈ [0, 1]) and (1 − cdw) can be, respec-
ively, considered as the weight information added to L (x) \ BP
and BP \L (x), which express the importance of different features
of L (x) \ BP and BP \ L (x) relative to the similarity degree.

−−→
L (x) = (b1, b2, . . . , bn1 ), bi =

{
1, ci ∈ L (x) ,

0, ci /∈ L (x) .

u⃗ = (u1, u2, . . . , un1 ), ui =

{
1, ci ∈ L (x) ∩ BP,

0, ci /∈ L (x) ∩ BP .

v⃗ = (v1, v2, . . . , vn1 ), vi =

{
1, ci ∈ L (x) \ BP,

0, ci /∈ L (x) \ BP .

w⃗ = (w1, w2, . . . , wn1 ), wi =

{
1, ci ∈ BP \ L (x) ,

0, ci /∈ BP \ L (x) .

3.4. Overall procedure and complexity

As shown in Fig. 5, the procedure of MA-CLM consists of
three main parts: (1) constructing concept attention spaces; (2)
constructing pseudo-concept space; and (3) concept generaliza-
tion. In order to simplify the framework diagram without loss
of generality, our framework diagram only considers a data set
with three decision-making classes. In the first part, each instance
type constructs a conceptual attention space based on the con-
cept cognition operator and attribute attention. The second part
is to perform conceptual clustering of the composed attention
space according to Algorithm 3 to form a pseudo-concept space.
In the third part, given any test instance x, obtain the binary
pair (x,L(x)) according to the concept cognition operator, and
the similarity between this instance and the pseudo-concepts in
each concept space will be generated according to the defined
attribute attention. Then, the final prediction vector will be ac-
complished by aggregating the three-class vectors, and the class
with maximum value will be output.

Let n,m respectively represent the number of instances and
attributes in a data set. The MA-CLM is implemented on this data
set. Let the time complexity of constructing a concept, comput-

ing the attention degree be O(t1), O(t2), respectively. We must

8

recognize all objects and attributes to construct CAS, costing
O((n + m)(t1 + t2)). In addition, as we showed in Algorithm 2,
let the time complexity of computing the attention coefficient
and constructing a pseudo-concept be O(t3),O(t4), then the time
complexity of Algorithm 2 is O(t3 |CAS| + t4) in the worst case.
Let the time complexity of finding the core concept be O(t5). The
time complexity of running in Algorithm 3 be O((t3 |CAS| + t4 +
5) |CAS|) by Algorithm 2 in the worst case. In the third stage, we
o not need to compute the similarity to all concepts in concept
paces, but only to those pseudo-concepts in pseudo-concept
paces. This means that, in practice, concept generalization re-
uires a time of less than O(t |CAS|) in most cases, where O(t) is
he time complexity of computing the concept similarity.

.5. Parameter tuning

We denote by U = {x1, x2, . . . , xn} a set of instances and K =
1, 2, . . . , n2} the label set. The assume that the truth instances
allocation matrix Y is a n × k matrix, Yij = 1 means that the
ith instances is assigned to the jth decision class. For different
parameters p = (cast, cst, pcat, eaw, iaw, cdw, ga), we obtain the
prediction scores Ŷij = Sim((xi,L (xi)) ,PCj) by Eq. (4). The whole
model is trained by using the cross entropy classification loss as
follows

L = −
∑

i

Yilogs(Ŷi
T
),

where s(·) is the softmax function.
Because the model in this paper is difficult to get a clear

analytical form of the prediction function, and numerical op-
timization method is not applicable, this paper uses quantum
particle swarm optimization algorithm (QPSO) [39] to optimize
the hyperparameters of the model.

4. Experiments

In this section, we conduct some experiments to evaluate the
MA-CLM. All the experiments were executed on the computer
with an Intel(R) Core(TM) i5-5200U CPU @ 2.20 GHz processor,
4 GB RAM, and a Window10 operating system. Note that our
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Table 2
Characteristics of experimental datasets.
ID Dataset Samples Feature Classes Attribute types

1 Chemical Composion of Ceramic 88 19 {44,44} Real
2 Zoo 101 17 {41,20,5,13,4,8,10} Categorical, Integer
3 Iris 150 4 {50,50,50} Real
4 Wine 178 13 {59,71,48} Integer, Real
5 Breast Cancer 286 9 {201,85} Categorical
6 Diabetes 768 9 {500,268} Real
7 Credit 1000 21 {300,700} Integer, Real
8 Hypothyroid 3772 30 {194,3481,95,2} Real
9 Mushroom 8124 22 {4208,3916} Categorical
Table 3
Classifiers parameter tuning details.
Classifier Parameter adjustment range Parameter adjustment method

MA-CLM cast: (0, 1], cst: (0, 1], pcat: (0, 1],
eaw: [0, 1], iaw: [0, 1], cdw: [0, 1], ga: [0, 1]

Quantum particle swarm optimization

S2CLα α: [0, 1], step size: 0.1 Grid search

DT max_depth: [20, 100], step size: 10,
min_impurity_decrease: [0.1, 0.5], step size: 0.05

Grid search

KNN n_neighbors: [1, 11], step size: 1 Grid search

MNB alpha: (0, 1], step size: 0.1 Grid search

SVM C: [1e−3, 1e−2, 1e−1, 1, 10, 100, 1000],
gamma: [0,1], step size: 0.1

Grid search

MLP hidden_layer_sizes: [(100, ) , (100, 30), (50, 50), (20, 20)],
solver: [adam, sgd, lbfgs],
activation: [identity, logistic, tanh, relu]

Grid search

LR penalty: [l1],
solver: [liblinear, saga],
random_state: [1, 20], step size: 1

Grid search

XGBoost n_estimators: [100, 300], step size: 10,
max_depth: [2, 15], step size: 1,
learning_rate: [0.01, 0.1] step size: 0.01,
subsample: [0.7, 0.9], step size: 0.02,
colsample_bytree: [0.5, 1], step size: 0.1,
min_child_weight: [1, 9], step size: 1

Random search

RF n_estimators: [50, 300] , step size: 10,
max_depth: [1, 20], step size: 1
criterion: [gini, entropy]

Random search
method and S2CLα were implemented in a jdk8.0.1310.11 with
eclipse-4.7.0 software environment and these other classification
algorithms were implemented based in the Sklearn.1. In exper-
iments, a total of nine data sets selected from various fields
for classification in the UCI2 have been employed for extensive
comparative studies. Table 1 summarizes characteristics of each
experimental data set, including the number of samples, number
of features, number of samples of each class, attribute types. For
the sake of brevity, we denote the nine datasets by Dataset 1–9.

The data sets in Table 2 are not formal contexts, so datasets
need to be preprocessed before the experiment. For numeri-
cal genera, Kononenko’s MDL Criterion [40] method is used to
transform the numeric attributes in the data set into nominal
attributes. Then, the nominal attributes are transformed into
dummy variables. The value of the dummy variable is 0 or 1,
which satisfies the definition of the formal context. At this point,
the dataset can be regarded as a formal context.

4.1. Performance on test datasets in contrast with s2clα and other
lassical classification algorithms

In order to analyze the efficiency of conceptual clustering
ased on graph attention and global similarity between concept

1 Source codes:https://scikit-learn
2 Available at:http://archive.ics.uci.edu/ml/datasets.html.
9

and concept space in the MA-CLM, S2CLα[3] with no unlabeled
data, which has no conceptual clustering stage was compared.
To further demonstrate the effectiveness of MA-CLM, we also
performed a comparative evaluation of MA-CLM against several
classical classification algorithms. The performance of MA-CLM
is compared against the following eight well-established classi-
fication approaches with parameter configurations suggested in
respective standard implementations. We choose the following
as our baselines: Decision Tree (DT) [41] with gini index measur-
ing the quality of the division, K-Nearest Neighbor (KNN) [41],
Multinomial Naive Bayes (MNB) [41], Support Vector Machine
(SVM) [41] with the Gaussian kernel function and one verse rest
approach, Multi-Layer Perception (MLP) [41], Logistic Regression
(LR) [42], XGBoost[43], Random Forest (RF)[44]. Meanwhile, for
a fair comparison, the parameter of classifiers was tuned by a
random search method or a grid search method. The details are
shown in Table 3 and the default in Sklearn are used for all
parameters except Table 3.

Firstly, the data set was randomly divided into the training
set, validation set, and test set according to the classification
ratio of 6:2:2, and the category ratio of the data set itself is
maintained. On the verification set, the quantum particle swarm
optimization algorithm was used to optimize the hyperparameter
of MA-CLM, which was repeated 20 times, and the average value
of the optimization result was taken as the final hyperparameter

value. The parameter selection of the model MA-CLM in different
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Table 4
The parameters of MA-CLM in datasets.
Dataset cast cst pcat eaw iaw cdw ga

Dataset 1 0.30 0.33 0.64 0.51 0.37 0.54 0.10
Dataset 2 0.30 0.98 0.57 0.29 0.32 0.15 0.00
Dataset 3 0.28 0.98 0.29 0.84 0.74 0.53 0.00
Dataset 4 0.28 0.88 0.61 0.35 0.36 0.69 0.90
Dataset 5 0.00 0.72 0.59 0.27 0.22 0.39 0.60
Dataset 6 0.97 0.77 0.68 0.62 0.20 0.54 0.73
Dataset 7 0.30 0.61 0.61 0.52 0.45 0.56 0.59
Dataset 8 0.26 0.61 0.44 0.27 0.28 0.32 0.04
Dataset 9 0.53 0.41 0.66 0.28 0.21 0.13 0.07
Table 5
Accuracy(mean±standard deviation%) comparison with other algorithms.
Dataset MA-CLM S2CLα DT KNN MNB SVM MLP LR XGBoost RF

Dataset 1 100.00 ± 0.00 100.00 ± 0.00 99.16 ± 0.03 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
Dataset 2 94.09 ± 2.59 94.99 ± 2.91 93.41 ± 0.19 91.36 ± 0.20 91.59 ± 0.80 86.36 ± 0.06 96.13 ± 0.08 93.64 ± 0.09 96.36 ± 0.07 93.86 ± 0.00
Dataset 3 95.83 ± 3.72 94.66 ± 3.48 95.00 ± 0.19 91.66 ± 0.32 94.83 ± 0.17 95.17 ± 0.20 94.50 ± 0.16 95.00 ± 0.19 94.33 ± 0.21 94.50 ± 0.18
Dataset 4 96.89 ± 2.52 90.67 ± 4.76 94.59 ± 0.08 99.45 ± 0.00 99.73 ± 0.01 99.05 ± 0.00 98.24 ± 0.05 98.65 ± 0.00 98.78 ± 0.00 98.91 ± 0.02
Dataset 5 75.60 ± 3.80 74.48 ± 2.13 70.69 ± 0.49 74.22 ± 0.08 73.79 ± 0.26 75.00 ± 0.05 74.19 ± 0.10 71.20 ± 0.21 70.86 ± 0.21 73.62 ± 0.13
Dataset 6 79.31 ± 3.71 68.86 ± 1.27 71.95 ± 0.12 76.49 ± 0.08 79.12 ± 0.12 77.53 ± 0.07 78.96 ± 0.09 78.90 ± 0.98 77.82 ± 1.25 77.01 ± 0.09
Dataset 7 75.84 ± 1.96 70.60 ± 2.55 70.00 ± 0.12 72.18 ± 0.04 75.03 ± 0.30 75.13 ± 0.02 73.45 ± 0.05 75.28 ± 0.04 74.80 ± 0.03 74.58 ± 0.01
Dataset 8 97.83 ± 0.37 94.49 ± 1.62 99.21 ± 0.63 97.89 ± 1.96 97.08 ± 1.93 99.11 ± 0.96 99.37 ± 0.61 99.40 ± 0.44 99.36 ± 0.50 99.16 ± 0.79
Dataset 9 93.72 ± 1.45 97.41 ± 0.43 94.59 ± 0.17 92.76 ± 0.46 89.99 ± 0.37 90.44 ± 0.46 91.77 ± 0.00 92.54 ± 0.31 92.01 ± 0.43 91.63 ± 0.82

Average_acc 89.90 87.35 87.62 88.45 89.01 88.64 89.62 89.40 89.37 89.25

Bold font indicates the highest accuracy.
datasets is shown in Table 4. For the same training set, the
classification accuracy of the test set was calculated using the
selected classifier and the proposed model. In order to avoid the
contingency of experimental results, the experiment was inde-
pendently repeated 20 times. Here, two widely-used metrics are
utilized for performance evaluation, including mean classification
accuracy and standard deviation.

The testing accuracy and standard deviation of each dataset
btained for each algorithm is reported in Tables 5. As it can
e observed in Tables 5 that, the MA-CLM achieved the highest
est accuracy on many datasets with relatively fine. The MA-CLM
lgorithm accelerates the CCL by conceptual clustering.

.2. Parameter analysis

To illustrate the validity of parameter setting in the model and
rovide reference values for the future application of the model.
n this section, we will analyze the influence of the parameters
n the MA-CLM model on the accuracy of model classification.
e analyze the model parameter groupings. Except for the pa-

ameters to be analyzed, all other parameters of MA-CLM use
he values in Table 4. For each dataset, the step size of the
arameters to be analyzed is set to 0.1, that is, (0.0, 0.1, . . . , 1.0).
hen, for the same parameter value, 20 tests were performed
ndependently on different training sets and test sets, and the
verage accuracy rate was calculated.
The parameter cast plays a decisive role in the number of

oncepts in the CAS. It can reflect the generalization degree of
oncepts in the conceptual space to some extent. Generally, the
arger the cast is, the more specific the intent of concepts in
he conceptual space is, and the minor generalization degree is.
ifferent datasets have different requirements for the degree of
oncept generalization. Therefore, it is necessary to make analy-
es on the influence of changes of parameter cast to the accuracy
f MA-CLM classification. Fig. 6 shows the trend of average ac-
uracy of MA-CLM with parameter cast . We can observe from
he figure that MA-CLM achieves the best accuracy for most of
he datasets when the parameter cast is between 0.2 and 0.3.
n addition, for most of datasets, it can also be observed that
he accuracy of MACLM changes slowly. In this case, in order to
10
Fig. 6. The classification accuracy various with the parameter cast .

improve the efficiency of the model, the threshold cast can be
increased while ensuring accuracy. Therefore, it can reasonably
be inferred that it is necessary for the model to select appropriate
parameters for each dataset and that the parameter cast in the
interval [0.2, 0.3] should be worth more attention.

The parameters cst, pcat affect the clustering degree of the
conceptual attention space and the pseudo-concept attribute set,
respectively. Fig. 7 shows the trend of the average accuracy of
MA-CLM parameters cst, pact . It can be seen from the figure that
when the parameter pcat is between [0.1,1], MA-CLM performs
well on most of datasets. Furthermore, for most of datasets, it can
also be observed that the classification accuracy is lower when
pcat is at [0,0.1] and cst is at [0,0.6]. Key information is lost due to
the high degree of clustering, which is in line with our cognition.
Therefore, the above two areas can be avoided when selecting
parameters.

The parameters iaw and eaw respectively represent the weight
of the intent attention and extent attention in the final attention
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Fig. 7. The classification accuracy various with the parameter cst and pcat .
0

evel. We pay different attention to the two in different situations.
ig. 8 shows the trend of the average accuracy of the MA-CLM
arameters iaw, eaw. It can be seen from Fig. 8 that different data
ets pay different attention to intent and extent. For example, the
ataset Credit pays more attention to extent. When the extent
ttention weight is larger, the accuracy is higher. For the dataset
ine, when the intent and extent weights are small, the accuracy

s lower, which shows that the intent and extent attention is
ignificant in attention level.
The parameter cdw represents the difference between the

arget concept and pseudo-concept intent L (x)\BP and BP \L (x)
o the whole impact of similarity. Fig. 9 shows the trend of the
verage accuracy of the MA-CLM parameter cdw. It can be seen
rom the figure that when the parameter cdw is between [0.2,
.8], MA-CLM performs well on most data sets. In addition, when
he parameter cdw is between [0,0.1] and [0.8,1], the accuracy of
ome data sets changes drastically. We can pay attention to these
wo thresholds when adjusting the parameters.

The parameter ga represents the influence of the category-
iscrimination attribute of the pseudo-concept space on the over-
ll similarity. Fig. 10 shows the trend of the average accuracy
f the MA-CLM parameter cdw. It can be seen from the figure

that the accuracy of the data sets Wine, Diabetes, and Credit
increases with the increase of the parameters, indicating that the
category discrimination attribute provides useful information for
concept prediction. In contrast, Zoo, Iris, and Hypothyroid show a
downward trend. It shows that these data sets pay more attention
to the maximum conceptual similarity. When the parameter cdw

is in [0.2,1], most datasets have high accuracy.

11
4.3. Concept generation on MNIST dataset

In order to further verify the role of MA-CLM in concept
generation, the MNIST3 dataset is selected and binarized, with
a threshold of 255. After that, ten samples of the number 3 are
selected from the dataset for conceptual clustering and pseudo-
concept generation. The model parameters are cast = 0.07, cst =
.4, pcat = 0.001, eaw = 0.5, iaw = 0.5. The concept generation

effect is shown in Fig. 11:

5. Conclusion

This paper mainly focuses on attention in CCL under a regu-
lar formal decision context. In other words, we have presented
a multi-attention conceptual cognitive model, a novel concept-
cognitive learning model that introduces intent attention, extent
attention, and attention caused by attributes of the intent into
the existing CCL. Moreover, considering the influence of attributes
with category distinction on similarity, we give a new definition
method of concept and concept space similarity.

Our model leveraging attention have successfully achieved
conceptual clustering and concept generation, and a large number
of experiments show that the MA-CLM model performs well
in the classification task. In a word, the MA-CLM has several
interesting properties. For instance, MA-CLM is efficient for clas-
sification tasks since it compresses the number of concepts in

3 Available at:https://yann.lecun.com/exdb/mnist.
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Fig. 8. The classification accuracy various with the parameter eaw and iaw.
Fig. 9. The classification accuracy various with the parameter cdw.

he concept space. It is directly applicable to concept-inductive
earning, including concept generation and the task of the gen-
ralization of the concept-cognitive learning model. Besides, the
nformation provided by the category discrimination attribute is
omprehensively considered in the concept identification.
For concept-induced learning and introducing a core property

n human cognitive processes, attention, into conceptual cog-
itive learning, we have put forward MA-CLM. However, it is
12
Fig. 10. The classification accuracy various with the parameter ga.

still not enough in many aspects, for example, how to perform
conceptual attention learning on the data stream. In addition,
from our experiments, we can observe that MA-CLM cannot di-
rectly handle continuous-valued attributes. Therefore, MA-CLM
for fuzzy data is also worth investigating. Our future research
work will focus on these issues.
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Fig. 11. The concept generation example diagram.
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